Увидеть Всё.
Микроскопы
и комплектующие
+7-495-509-28-92
+7-925-509-28-92

Микроскоп



Микроскоп применяют для получения больших увеличений при наблюдении мелких предметов. Увеличенное изображение предмета в микроскопе получается с помощью оптической системы, состоящей из двух короткофокусных линз – объектива и окуляра. Объектив даст действительное перевернутое увеличенное изображение предмета. Это промежуточное изображение рассматривается глазом через окуляр, действие которого аналогично действию лупы. Окуляр располагают так, чтобы промежуточное изображение находилось в его фокальной плоскости, в этом случае лучи от каждой точки предмета распространяются после окуляра параллельным пучком. Прибор, предназначенный для получения увеличенных изображений, а также измерения объектов или деталей структуры, невидимых или плохо видимых невооружённым глазом, используемые для многократного увеличения рассматриваемых объектов. С помощью этих приборов определяются размеры, форма и строение мельчайших частиц. Микроскоп – незаменимое оптическое оборудование для таких сфер деятельности, как медицина, биология, ботаника, электроника и геология, так как на результатах исследований основываются научные открытия, ставится правильный диагноз и разрабатываются новые препараты.

История создания микроскопа

Первый микроскоп, изобретённый человечеством, были оптическими, и первого изобретателя не так легко выделить и назвать. Самые ранние сведения о микроскопе относят к 1590 году. Чуть позже, в 1624-ом году Галилео Галилей представляет свой составной микроскоп, который он первоначально назвал «оккиолино». Годом спустя его друг по Академии Джованни Фабер предложил для нового изобретения термин микроскоп.

Виды микроскопов

В зависимости от требуемой величины разрешения рассматриваемых микрочастиц материи, микроскопии, микроскопы классифицируются на:

  1. Оптический микроскоп
  2. Бинокулярный микроскоп
  3. Стереомикроскоп
  4. Металлографический микроскоп
  5. Поляризационный микроскоп
  6. Люминесцентный микроскоп
  7. Измерительный микроскоп
  8. Электронный микроскоп
  9. Сканирующий зондовый микроскоп
  10. Рентгеновский микроскоп
  11. Дифференциальный интерференционно-контрастный микроскоп

Оптический микроскоп

Оптический микроскопЧеловеческий глаз представляет собой естественную оптическую систему, характеризующуюся определённым разрешением, то есть наименьшим расстоянием между элементами наблюдаемого объекта (воспринимаемыми как точки или линии), при котором они ещё могут быть отличны один от другого. Для нормального глаза при удалении от объекта на т. н. расстояние наилучшего видения (D = 250 мм), среднестатистическое нормальное разрешение составляет 0,176 мм. Размеры микроорганизмов, большинства растительных и животных клеток, мелких кристаллов, деталей микроструктуры металлов и сплавов и т. п. значительно меньше этой величины. До середины XX века работали только с видимым оптическим излучением, в диапазоне 400—700 нм, а также с ближним ультрафиолетом (люминесцентный микроскоп). Оптически микроскоп не мог давать разрешающей способности менее полупериода волны опорного излучения (диапазон длин волн 0,2—0,7 мкм, или 200—700 нм). Таким образом, оптический микроскоп способен различать структуры с расстоянием между точками до ~0,20 мкм, поэтому максимальное увеличение, которого можно было добиться, составляло ~2000 крат.

Бинокулярный микроскоп

Бинокулярный микроскопБинокулярный микроскоп позволяет получать 2 изображения объекта, рассматриваемые под небольшим углом, что обеспечивает объёмное восприятие, это оптический прибор для многократного увеличения рассматриваемых объектов, который обладает специальной бинокулярной насадкой, позволяющей вести изучение объекта при помощи обоих глаз. В этом и заключается его удобство и преимущество перед обычными микроскопами. Именно поэтому бинокулярный микроскоп чаще других применяется в профессиональных лабораториях, медицинских учреждениях и высших учебных заведениях. В числе других преимуществ данного прибора необходимо отметить высокое качество и контрастность изображения, механизмы грубой и точной настройки. Бинокулярный микроскоп работает по тому же принципу, что и обычные монокулярные: объект изучения помещают под объектив, где на него направляется искусственный световой поток. Бинокулярный микроскоп применяется для биохимических, патологоанатомических, цитологических, гематологических, урологических, дерматологических, биологических и общеклинических исследований. Общее увеличение (объектив*окуляр) оптических микроскопов с бинокулярной насадкой обычно больше, чем у соответствующих монокулярных микроскопов.

Стереомикроскоп

Стерео микроскопСтереомикроскоп, как и другие виды оптических микроскопов, позволяют работать как в проходящем, так и в отражённом свете. Обычно они имеют сменные окуляры бинокулярной насадки и один несменный объектив (есть и модели со сменными объективами). Большинство стереомикроскопов дает существенно меньшее увеличение, чем современный оптический микроскоп, однако имеет существенно большее фокусное расстояние, что позволяет рассматривать крупные объекты. Кроме того, в отличие от обычных оптических микроскопов, которые дают, как правило, инвертированное изображение, оптическая система стереомикроскопа не «переворачивает» изображение. Это позволяет широко использовать их для препарирования микроскопических объектов вручную или с использованием микроманипуляторов. Наиболее широко бинокуляры используются для исследования неоднородностей поверхности твёрдых непрозрачных тел, таких как горные породы, металлы, ткани; в микрохирургии и пр.

Металлографический микроскоп

Металлографический микроскопСпецифика металлографического исследования заключается в необходимости наблюдать структуру поверхности непрозрачных тел. Поэтому металлографический микроскоп построены по схеме отраженного света, где имеется специальный осветитель установленный со стороны объектива. Система призм и зеркал направляет свет на объект, далее свет отражается от не прозрачного объекта и направляется обратно в объектив. Современный прямой металлографический микроскоп характеризуются большим расстоянием между поверхностью столика и объективами и большим вертикальным ходом столика, что позволяет работать с крупными образцами. Максимальное расстояние может достигать десятки сантиметров. Но обычно в материаловедении используются инвертированный микроскоп, как не имеющие ограничения на размер образца (только на вес) и не требующие параллельности опорной и рабочей граней образца (в этом случае они совпадают).

Поляризационный микроскоп

Поляризационный микроскопВ основе принципа действия поляризационного микроскопа лежит получение изображения исследуемого объекта при его облучении поляризованными лучами, которые в свою очередь должны быть получены из обычного света с помощью специального прибора — поляризатора. В сущности при прохождении поляризованного света через вещество либо отраженное от него меняет плоскость поляризации света в результате чего на втором поляризационном фильтре выявляется в виде излишнего затемнения. Либо дают специфичные реакции как двойное лучепреломление в жирах. Поляризационный микроскоп предназначен для наблюдения, фотографирования и видеопроекции объектов в поляризованном свете, а также исследований по методам фокального экранирования и фазового контраста. Поляризационный микроскоп используется для исследования широкого круга тех свойств и явлений, которые обычно недоступны для привычного оптического микроскопа. Поляризационный микроскоп снабжается бесконечной оптикой с профессиональным программным обеспечением.

Люминесцентный микроскоп

Люминесцентный микроскопПринцип действия люминесцентных микроскопов основывается на свойствах флюоресцентного излучения. Микроскоп используются для исследования прозрачных и непрозрачных объектов. Люминесцентное излучение, по-разному отражается различными поверхностями и материалами, что и позволяет успешно применять его для проведения иммунохимических, иммунологических, иммуноморфологических и иммуногенетических исследований. Благодаря их уникальным возможностям, люминесцентный микроскоп широко используются в фармацевтике, ветеринарии и растениеводстве, а, кроме того, в биотехнологических отраслях промышленности. Люминесцентный микроскоп также практически незаменим для работы экспертно-криминалистических центров и санитарно-эпидемиологических учреждений.

Измерительный микроскоп

Измерительный микроскопИзмерительный микроскоп служит для точного измерения угловых и линейных размеров объектов. Используется в лабораторной практике, в технике и машиностроении. На универсальном измерительном микроскопе проводятся измерения проекционным методом, а также методом осевого сечения. Универсальный измерительный микроскоп отличается простотой автоматизации благодаря своим конструктивным особенностям. Наиболее простым решением является установка квазиабсолютного датчика линейных перемещений, благодаря чему значительно упрощается процесс наиболее часто проводимых (на УИМ) измерений. Современное применение универсального измерительного микроскопа обязательно подразумевает наличие как минимум цифрового отсчетного устройства. Несмотря на появление новых прогрессивных средств измерения, универсальный измерительный микроскоп достаточно широко используется в измерительных лабораториях благодаря своей универсальности, простоте измерения, а также возможности легко автоматизировать процесс проведения измерения.

Электронный микроскоп

Электронный микроскопЭлектронный микроскоп позволяют получать изображение объектов с максимальным увеличением до 1000000 раз, благодаря использованию, в отличие от оптического микроскопа, вместо светового потока пучка электронов с энергиями 200 В ÷ 400 кэВ и более (например, просвечивающий электронный микроскоп высокого разрешения с ускоряющим напряжением 1 МВ). Разрешающая способность электронного микроскопа в 1000÷10000 раз превосходит разрешение светового микроскопа и для лучших современных приборов может быть меньше одного ангстрема. Для получения изображения электронный микроскоп использует специальные магнитные линзы, управляющие движением электронов в колонне прибора при помощи магнитного поля. Электронное изображение формируется электрическими и магнитными полями примерно так же, как световое - оптическими линзами.

Сканирующий зондовые микроскоп

Сканирующий зондовый микроскопСканирующий зондовый микроскоп это класс микроскопов для получения изображения поверхности и её локальных характеристик. Процесс построения изображения основан на сканировании поверхности зондом. В общем случае позволяет получить трёхмерное изображение поверхности (топографию) с высоким разрешением. Сканирующий зондовый микроскоп в современном виде изобретен Гердом Карлом Биннигом и Генрихом Рорером в 1981 году.  Отличительной СЗМ особенностью является наличие: зонда, системы перемещения зонда относительно образца по 2-м (X-Y) или 3-м (X-Y-Z) координатам, регистрирующей системы. Регистрирующая система фиксирует значение функции, зависящей от расстояния зонд-образец. Обычно регистрируемое значение обрабатывается системой отрицательной обратной связи, которая управляет положением образца или зонда по одной из координат (Z). В качестве системы обратной связи чаще всего используется ПИД-регулятор.

Основные типы сканирующих зондовых микроскопов:

  1. Сканирующий атомно-силовой микроскоп

  2. Сканирующий туннельный микроскоп

  3. Ближнепольный оптический микроскоп

Рентгеновский микроскоп

Рентгеновский микроскопРентгеновский микроскоп — устройство для исследования очень малых объектов, размеры которых сопоставимы с длиной рентгеновской волны. Основан на использовании электромагнитного излучения с длиной волны от 0,01 до 1 нанометра. Рентгеновский микроскоп по разрешающей способности находится между электронными и оптическими микроскопами. Теоретическая разрешающая способность рентгеновского микроскопа достигает 2-20 нанометров, что на порядок больше разрешающей способности оптического микроскопа (до 150 нанометров). В настоящее время существуют рентгеновский микроскоп с разрешающей способностью около 5 нанометров.

Рентгеновский микроскоп бывают:

  1. Проекционный рентгеновский микроскоп.
    ППроекционный рентгеновский микроскоп представляет собой камеру, в противоположных концах которой располагаются источник излучения и регистрирующее устройство. Для получения чёткого изображения необходимо, чтобы угловая апертура источника была как можно меньше. В микроскопах такого типа до недавнего времени не использовались дополнительные оптические приборы. Основным способом получить максимальное увеличение является размещение объекта на минимально возможном расстоянии от источника рентгеновского излучения. Для этого фокус трубки располагается непосредственно на окне рентгеновской трубки либо на вершине иглы анода, помещенной вблизи окна трубки. В последнее время ведутся разработки микроскопов, использующих зонные пластинки Френеля для фокусировки изображения. Такой микроскоп имеют разрешающую способность до 30 нанометров.


  2. Отражательный рентгеновский микроскоп.
    В микроскопе этого типа используются приёмы, позволяющие добиться максимального увеличения, благодаря чему линейное разрешение проекционного рентгеновского микроскопа достигает 0,1—0,5 мкм. В качестве линз в них используется система зеркал. Изображения, создаваемые отражательными рентгеновскими микроскопами даже при точном выполнении профиля их зеркал искажаются различными аберрациями оптических систем: астигматизм, кома. Для фокусировки рентгеновского излучения применяются также изогнутые монокристаллы. Но при этом на качество изображения сказываются структурные несовершенства монокристаллов, а также конечная величина брэгговских углов дифракций. Отражательный рентгеновский микроскоп не получил широкого распространения из-за технических сложностей его изготовления и эксплуатации.

Дифференциальный интерференционно-контрастный микроскоп

Дифференциальный интерференционно-контрастный микроскопДифференциальный интерференционно-контрастный микроскоп позволяет определить оптическую плотность исследуемого объекта на основе принципа интерференции и таким образом увидеть недоступные глазу детали. Относительно сложная оптическая система позволяет создать чёрно-белую картину образца на сером фоне. Это изображение подобно тому, которое можно получить с помощью фазово-контрастного микроскопа, но в нём отсутствует дифракционное гало. В дифференциальном интерференционно-контрастном икроскопе поляризованный луч из источника света разделяется на два луча, которые проходят через образец разными оптическими путями. Длина этих оптических путей (т. е. произведение показателя преломления и геометрической длины пути) различна. Впоследствии эти лучи интерферируют при слиянии. Это позволяет создать объемное рельефное изображение, соответствующее изменению оптической плотности образца, акцентируя линии и границы. Эта картина не является точной топографической картиной.

Главная | Микроскопы | Комплектующие | Оптика | Доставка | Оплата | Контакты


Copyright © 2008 МБС10 - микроскопы, кронштейны, оптические головки, объективы
увидетьвсёRambler's Top100 Яндекс.Метрика